

143rd Street Phase I Engineering Study (Wolf Road to Southwest Highway) Noise Forum June 9, 2020

Programs and Engineering Services

Meeting Agenda

- ❖ Presentation (6:00 6:45pm)
 - Introductions
 - Project Purpose & Limits
 - Preliminary Preferred Improvement
 - Traffic Noise Study Overview
 - Project Schedule & Next Steps
- ❖ Q & A (7:45 – 8:30pm)

Instructions:

- Please mute your computer
- We will stop periodically to answer questions.
- You can also type in your questions using the conversation tool.

Introductions

Orland Park

- Khurshid Hoda Director | Engineering Programs and Services
- Sean Marquez Village Engineer

Project Consultants

- Matt Huffman (CBBEL)
- Pete Knysz (CBBEL)
- Tim Kelly (Huff & Huff)

Project Purpose & Limits

The project purpose it to address capacity, safety, accessibility, and non-motorized connection deficiencies along 143rd Street between Wolf Road and Southwest Highway.

Project Purpose & Limits

This project is part of regional plan to widen 143rd Street from 2-lane to 5-lanes from I-355 on the west to Cicero Avenue on the east. The Village of Orland Park is leading engineering on two of the three remaining sections.

Preliminary Preferred Improvement

143rd Street Near Wolf Road

- ❖ 143rd Street widening to 5-lanes
- Barrier Median
- Full access at Beacon Ave
- ❖ Bike path (north)
- Sidewalk (south)
- Potential Noise Wall (north side from Beacon Avenue to First Midwest Bank driveway)

Preliminary Preferred Improvement

143rd Street Near Wolf Road - Existing Conditions

Preliminary Preferred Improvement 143rd Street Near Compton Ct. - Existing Conditions

Preliminary Preferred Improvement 143rd Street Near Compton Ct. - Existing Conditions

Preliminary Preferred Improvement 143rd Street Near Compton Ct. – Existing Conditions

Preliminary Preferred Improvement 143rd Street Near Wolf Road - Proposed Improvement

Preliminary Preferred Improvement

143rd Street Near Wolf Road - Proposed Improvement

Preliminary Preferred Improvement

143rd Street Typical Section

143RD STREET EAST OF BEACON AVE. APPROACHING WOLF ROAD INTERSECTION (LOOKING EAST)

Meeting Agenda Traffic Noise Study Overview

- Policy & Procedures
- Results
- Potential Noise Wall
- Viewpoint Solicitation (i.e., Voting)

Traffic Nosie Study Overview Policy & Procedures

Purpose of a Traffic Noise Study

- Comply with IDOT and FHWA policy
- Required if adding a travel lane or a significant alignment or elevation change
- Predict worst hour traffic noise conditions
- Identify and evaluate potential traffic noise impacts for the entire project area
- Evaluate feasibility and reasonableness of potential traffic noise reduction techniques

Policy & Procedures

Traffic Noise Studies

- Identify Common Noise Environments (CNEs) and noise receptors
- Conduct noise monitoring and validate existing model
- Perform computer modeling
- Complete traffic noise abatement analysis
- Determine traffic noise abatement feasibility and reasonableness per IDOT and FHWA policy
- Obtain benefited receptor viewpoints

Policy & Procedures

CNEs/Receptor Locations

- Review land use
- Divide corridor into CNEs based on FHWA Activity Categories
- CNE = Group of receptors with:
 - Similar land use
 - Similar traffic characteristics
 (e.g., traffic volume, traffic mix)
 - > Same basic topography

Traffic Nosie Study Overview Policy & Procedures

FHWA Noise Abatement Criteria (NAC) – Used to identify CNEs and determine impacts

Activity Category	dB(A)	Description of Activity Category		
А	57 (Exterior)	Lands on which serenity and quiet are of extraordinary significance		
В	67 (Exterior)	Residential *		
С	67 (Exterior)	Cemeteries, day care centers, hospitals, libraries, medical facilities, parks/recreation areas, picnic areas, places of worship, schools		
D	52 (Interior)	Day care centers, hospitals, libraries, medical facilities, places of worship, schools (only when no exterior activities) – not for residential		
Е	72 (Exterior)	Hotels, motels, offices, restaurants/bars, and other developed lands not included in Categories A-D or F		
F		Agriculture, industrial, maintenance facilities, manufacturing, retail facilitie warehousing		
G		Undeveloped lands that are not permitted		

^{*} Noise abatement is considered when the noise level, at a given receptor, approaches [within 1 dB(A)], meets, or exceeds the NAC in the Build Condition

Policy & Procedures

Traffic Nosie Study Overview Policy & Procedures

CNEs/Receptor Locations

27 CNEs were identified along the Project Corridor

Policy & Procedures

CNEs/Receptor Locations

- 27 CNEs were identified along the Project Corridor
- ♦ 6 CNEs are shown in the figure at the Wolf Road at 143rd
 Street intersection

Policy & Procedures

Common Noise Environment Receptor Location #1

- One representative receptor per CNE
- Typically Exterior location of frequent human use
- Represents the worst-case noise condition for the CNE
- This receptor is studied to determine if there is an impact

Policy & Procedures

Noise Monitoring

- Used to validate Existing Condition Traffic Noise Model
- At 25-50% of Representative Receptors
- Measure existing sound levels for 8-15 minutes
- Record weather data
- Collect traffic data (e.g., traffic counts and approx. speed)

Policy & Procedures

Traffic Noise Model

- ❖ Input
 - Traffic volumes, speed, and composition
 - Roadway alignment (horizontal and vertical)
 - Receptor location and elevation
 - Terrain lines
 - Traffic control devices (e.g., traffic signals)
- Scenarios Modeled
 - Existing Condition
 - Year 2050 Traffic with No Improvement (No-Build Condition)
 - Year 2050 Traffic with Improvement (Build Condition)

Traffic Nosie Study Overview Results

- ❖ Impact = NAC is
 - ➤ Approached (within 1 dB(A))
 - **≻**Met
 - >Exceeded
 - ➤B = Residential; Impact = 66 dB(A)
 - ➤C = Recreational; Impact 66 dB(A)
 - ➤E = Offices/ Restaurant; Impact 72 dB(A)
- Impact pertains to Build Condition
- 6 CNEs impacted under Build Condition (Shown in Table)

(Under Build Condition with No Walls)								
CNE/ Receptor #	Activity Category/ NAC	Noise Level at the Representative Receptor dB(A)						
		Existing	No-Build (Year 2050)	Build (Year 2050)				
R1	B/67	65	66	68				
R10	C/67	64	66	68				
R10 R13	C/67 B/67	64 67	66 69	68 68				
	,							
R13	B/67	67	69	68				

Impacted Common Noise Environments (CNEs)

With No Walls

The Courtyards Subdivision

Traffic Nosie Study Overview Results

How much of a Change?

Change in Noise Level	Perception of Change	
±3 dB(A)	Barely Perceivable Change	
±5 dB(A)	Readily Perceivable Change	
±10 dB(A)	Doubling/Halving Noise Loudness	

Potential Noise Wall

Earth Berms

- Earth berms require a large footprint
- \rightarrow 10 ft high = \sim 60 ft footprint (3H:1V slope
- Not feasible due to property impact

RECEPTOR SOURCE NO NOISE REDUCTION SOURCE NO NOISE REDUCTION

Landscaping (Vegetation)

- Not recognized by FHWA as noise abatement
- Generally, 100-200 feet wide; 16-18 feet tall; and dense understory

Noise Walls

- Most effective when close to the road or homes
- Loses effectiveness with breaks for driveways/side roads
- Much smaller footprint (~1 ft wide) than an earth berm

Traffic Nosie Study Overview Potential Noise Wall

Abatement is considered for <u>residential receptors</u> with traffic noise levels ≥66 dB(A) in the Build Condition

- Feasible
 - Noise barrier can be built, and
 - Achieve at least 5 dB(A) reduction for at least 2 impacted receptors
- Noise barrier feasible at 1 CNE (R1)
- Noise barrier not feasible at 5 CNEs (R10, R13, R14, R15 and R16)

Traffic Nosie Study Overview Potential Noise Wall

Change in Noise Level	Perception of Change		
±3 dB(A)	Barely Perceivable Change		
±5 dB(A)	Readily Perceivable Change		

Benefited Receptor

- Receives ≥5 dB(A) noise reduction
- Does not need to be impacted

Potential Noise Wall

9 Benefited Receptors (**)

Potential Noise Wall

(approx. locationnot to scale)

Preliminary Preferred Improvement

Potential Noise Wall

Potential Noise Wall

- Reasonable
 - At least 8 dB(A) reduction for at least 1 benefited receptor
 - Cost effective (IDOT policy \$30,000/benefited receptor), and
 - Desired by the majority of benefited receptors
- Abatement will reduce noise levels...but <u>noise will</u> <u>still be present</u>

Potential Noise Wall

❖ A noise wall is considered feasible and reasonable for CNE 1 since the estimated cost <u>does not exceed</u> the adjusted allowable cost per benefited receptor...pending viewpoint solicitation

Potential Noise Wall

Potential Noise Wall

View looking east along 143rd Street

Potential Noise Wall

Sample Noise Wall Panel - For informational purposes only - Style to be determined in Phase II

Viewpoint Solicitation (i.e., Voting)

- Benefited Receptors Vote (Village does not vote)
- ❖ Goal is to obtain <u>at least 1/3</u> of potential vote points
- Up to two attempts (mailings) to achieve goal
- ❖ If 1/3 vote points are not received after 2 attempts...use results received
- Do not double count...only allowed to vote once
- Results are based on the majority of vote points received
- If no votes are received...noise wall will not be recommended
- If greater than 50% of the vote points received are in favor of the noise wall, it will be recommended for construction

Viewpoint Solicitation (i.e., Voting)

Votes are Weighted

- Front Row versus Non-Front Row
- Front Row property is adjacent to the potential noise wall

Viewpoint Solicitation (i.e., Voting)

Votes are Weighted

- Owner versus Renter (9 residences)
- Both the Owner <u>and</u> the Renter are provided the opportunity to vote

Same number of vote points

TABLE 4-5 NUMBER OF VOTES PER BENEFITED RECEPTOR

	Rental 1	Owner Occupied	
Receptor Location	Owner: Number of	Renter: Number of	Property: Number of
	Votes Per Unit	Votes Per Unit	Votes Per Unit
Front Row	2	2	4
Non-Front Row	1	1	2

From IDOT Highway Traffic Noise Assessment Manual, 2017

Viewpoint Solicitation (i.e., Voting)

Voting Options

- Submit the Viewpoint Solicitation form via self-addressed, stamped envelope
- ❖ Fax the Viewpoint Solicitation form to (847) 823-0520 Attn: Matt Huffman
- Scan the Viewpoint Solicitation form and e-mail to mhuffman@cbbel.com

Project Schedule & Next Steps

You have received Viewpoint Solicitation Form via Certified Mail

- Votes must be received within 2 weeks (after start of voting period - 1st Attempt)
- If necessary, 2nd Attempt to obtain 1/3 of potential vote points
- Public Hearing: Fall 2020
- Anticipated Phase I Design Approval: End of 2020
- Phase II Engineering Begins in Mid 2021
- Construction is currently unfunded. If funding is obtained, Construction could begin in 2024

Question and Answer Session

Visit the Project Website at:

https://orlandpark.org/services/roads

